|
Atomistry » Nitrogen » Nitrogen Cycle | ||||
Atomistry » Nitrogen » Nitrogen Cycle » |
Nitrogen Cycle in Nature
In nature there exists a continuous cycle whereby nitrogen is first "fixed," and then subsequently liberated from combination with other elements. This natural cycle of operations may be conveniently represented by the diagram.
Ammonification is the production of ammonia from proteins and their cleavage products by means of micro-organisms. Both fungi and bacteria cause extensive decomposition of albumens and proteins, first producing albumoses and peptones, then amino-acids, which are readily converted into ammonia. Amongst soil bacteria, one of the commonest is B. mycoides, which is very efficient in producing ammonia from organic nitrogenous materials. Energy relations are an important factor in the rapidity of decomposition of proteins. Thus both carbohydrates and proteins are utilised as sources of energy. The presence of much carbohydrate material will result in a relatively small amount of decomposition of proteins - just sufficient to provide the necessary nitrogen. In the absence of carbohydrates, proteins are quickly broken down in order to obtain a supply of carbon primarily, and the excess of nitrogen is converted into ammonia. With reference to the products of animal metabolism, of which urea is typical, mention should be made of the enzyme urease which converts urea by hydrolysis into ammonium carbonate, CO(NH2)2+2H2O = (NH4)2CO3. Nitrification is the production of nitrates, either from ammonia or nitrites, by processes of oxidation. The experiments of Schloesing and Muntz in 1877 showed that ammonia was oxidised to nitrate by passing through a long tube filled with soil. No oxidation occurred if the soil was first sterilised, which showed that the chemical change was brought about by micro-organisms. Winogradski in 1890 identified and isolated specific bacteria which produced this nitrification, and showed that the oxidation proceeded in two stages, each of which was brought about by different species. Thus the first oxidation of ammonia to nitrite was the work of nitrous bacteria: (1) 2NH3+3O2 = 2HNO2+2H2O; while the second stage, resulting in the formation of nitrate, was caused by nitric bacteria (nitro-bacter): (2) 2HNO2+O2 = 2HNO3. It would seem that nitrification depends upon a large number of factors, such as supply of oxygen, water, basic materials, mineral matter, etc. The importance of the amount and distribution of basic materials is due to the neutralisation of organic and mineral acids produced by bacteria, as, generally speaking, favourable conditions for both ammonifying and nitrifying organisms are only maintained if the soil is neutral or very slightly acid. It has been mentioned that a certain loss of combined nitrogen in the soil occurs due to denitrifying organisms. Denitrification is the conversion of nitrates into nitrogen or oxides of nitrogen, and the bacteria bringing about these changes are chiefly of the aerobic type. Hence insufficient aeration of the soil will force these organisms to obtain their necessary oxygen from nitrates, with the resultant loss of nitrogen. Various kinds of bacteria are able to bring about the changes represented by the following equations: - 2HNO3 = 2HNO2+O2, HNO3 = NH3+2O2, 4HNO2 = 2H2O+2N2+O2. The mutual reaction of nitrites and ammonia or amino-derivatives will also occur: NH4Cl+KNO2 = N2+KCl+2H2O; and van Iterson has suggested that certain bacteria are capable of causing the oxidation of carbon compounds: 5C+4KNO3+2H2O = 4KHCO3+2N2+CO2, 3C+4KNO3+ H2O = 2KHCO3+2N2+K2CO3. The prevention of denitrification is of paramount importance in market gardens and greenhouses, but appears to be of little account in field cultivation. There are certain micro-organisms which are capable of reversing the ammonifying and nitrifying processes in order to utilise available nitrogen compounds for synthesising complex protein substances, which result in the withdrawal of nitrogen compounds for plant uses. |
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |