|
Atomistry » Nitrogen » Hydrazine | |||||||||||||||||||||||||||||||||||
Atomistry » Nitrogen » Hydrazine » Hydrazine Salts » Sulphonic Derivatives » |
HydrazineHistory
Organic derivatives of hydrazine have long been known and used in syntheses, as, for example, that of phenylhydrazones from hydrazine. The substituted hydrazines are obtained by the reduction of compounds containing the diazo grouping; thus, diazo-benzene chloride may be reduced to phenylhydrazine hydrochloride,
C6H5-N=N-Cl + 4H → C6H5NH-NH2HCl; azo-benzene yields diphenylhydrazine, C6H5-N=N-C6H5 + 2H → C6H5NH-NHC6H5; nitro-urea yields semi-carbazide, H2N-CO-NH-NO2 + 6H → H2N-CO-NH-NH2 + 2H2O; diazo-acetic ester yields hydrazo-acetic ester, C2H5-O-CO-CH=N2 + 2H → C2H5-O-CO-CH=(NH)2. Hydrazine itself was prepared by Curtius in 1887 from di-diazo-acetic acid. Para-urazine, C2H4O2N4, derived from urea, may also be hydrolysed by dilute sulphuric acid and the sulphate of hydrazine crystallised out. When ethyl-diazo-acetate is heated with concentrated potash a coloured salt is formed. After digestion with sulphuric acid the colour disappears and hydrazine sulphate is formed. Preparation
The Hydrate and the Free Base
Hydrazine is set free by alkalies in aqueous solution in the hydrated form. One molecule of water is firmly combined, for on distillation of the salts with solid potassium hydroxide, the hydrate. N2H4.H2O, is obtained as a fuming liquid which boils at 188° C. This is sometimes regarded as a constant boiling mixture, i.e. one of maximum boiling-point, like those of the halogen hydracids and water. It has been proved that there is dissociation in the vapour phase. The hydrate does not freeze at -40° C.; it does not exist as a definite solid compound. It has a strong smell resembling that of ammonia, and is a most penetrating reagent; it corrodes not only cork and indiarubber, but also glass.
The solutions are oxidised by atmospheric oxygen: N2H4.H2O + O2 = N2 + 3H2O. They also decompose spontaneously, giving ammonia, and more quickly in the presence of spongy platinum, giving nitrogen and hydrogen as well: 2N2H4 = 2NH3 + N2 + H2. The spontaneous decomposition in the presence of a little alkali gives different proportions: 3N2H4 = 2NH3 + 2N2 + 3H2. In connection with this instability it may be noted that the heat of formation in dilute solution (deduced from the heat of oxidation by K2Cr2O7, etc.) is –9.5 Cals. Hydrazine itself is obtained by distillation of the hydrate with anhydrous alkalies in a reducing atmosphere and under diminished pressure. Barium oxide may be used as alkali. The partly dehydrated base may be boiled with an excess of the oxide for three hours under a reflux condenser and then distilled in hydrogen at reduced pressure. The product may contain 99.7 per cent, of hydrazine. It may also be prepared by a similar method from the carbonate or the borate. The barium oxide may be replaced by solid sodium hydroxide. The hydrochloride may be decomposed with sodium methoxide, and the methyl alcohol removed by distillation under diminished pressure. PropertiesHydrazine is a colourless liquid which can easily be solidified; the solid melts at +1.4° C. The liquid boils at 113.5° C. under 761.5 mm., at 56° C. under 71 mm. pressure. The density is only slightly greater than that of water. D4°15° is 1.0114, and is 1.0258.The refractive index for the D line is 1.46979; for Hα it is 1.46675. The molecular refraction MD is 8.867. Hydrazine mixes in all proportions with water, with evolution of heat, 1.919 Cals. per mol. in dilute solution. It also mixes with some alcohols, but not with other organic solvents of the " normal " type, i.e. those which, on the evidence of many physical properties, appear to exist as simple molecules and are freely miscible with one another. As a solvent it bears many resemblances to liquid ammonia. It dissolves sulphur and iodine, but with some chemical action. Most of the sulphur is deposited again on pouring the solution into water, but some reacts with evolution of nitrogen and formation of an unstable hydrosulphide. The alkali metals dissolve, and also react with evolution of hydrogen. Sodium gives a white explosive product, which has been described as a derivative of azoimide, or as a mono- or di-sodium hydrazate, NaN2H3 and Na2N2H2. These solutions conduct electricity; nitrogen and hydrogen are evolved at the electrodes. It also dissolves many salts, especially halides, nitrates, and ammonium salts. Typical solubilities are: NaCl, 12.2; KNO3, 21.7; KI, 135.7; Ba(NO3)2, 81.1, in 100 parts by weight of hydrazine. All these solutions conduct electricity. Many reactions take place in this solvent. Thus, hydrazine sulphide and a zinc salt give zinc sulphide. Hydrazine as a Base
A solution of hydrazine in water reacts alkaline on account of electrolytic dissociation:
N2H4.H2O ⇔ H2N.NH•3 + OH'. The constant of this dissociation is obtained from the following conductivity measurements: -
Assuming a kation mobility of 61, and that the mobility of the hydroxyl ion is 177 (both at 25° C.), the value of λ0 is 238, whence the dissociation constant is as stated in the third line. Taking into account the present accepted value of the mobility of OH', which is rather greater (ca. 190), the dissociation constant becomes 2×10-6 in round numbers; which is about 1/10 of the constant of ammonia (q.v.). The heat of neutralisation is also less than that of ammonia. Thus the corresponding heats of formation of the salts in dilute solution are:
Although the salts of the diacid base are known in the solid state, they are completely dissociated in solution. Thus there is a difficulty in the addition of a hydrion to the second - NH2. This is no doubt connected with the fact that alkylation also only takes place on one -NH2. The final product is a quaternary halide of the monacid base which cannot be alkylated further: NH2-NH2 → NH2-NHR → NH2.NR2 → NH2-NR2.RI. Hydrazine as a Reducing Agent
Solutions of the free base and its salts are slowly oxidised by atmospheric oxygen. They are powerful reducing agents, and will reduce cupric and ferric salts to the cuprous and ferrous states, iodine to hydrogen iodide, and selenious acid to selenium. The noble metals are precipitated from their salts, and metallic copper is also similarly precipitated.
Derivatives of Hydrazine
In addition to the numerous organic derivatives in which the hydrogen is replaced by alkyl or aryl radicals, etc., there are a few derivatives of inorganic acids, but these also are more stable if some of the hydrogen is replaced by organic radicals.
The sulphonate, H2N-NH-SO3H, and the disulphonate are known. When air is passed through fuming sulphuric acid and then through anhydrous hydrazine, hydrazine hydrazine-sulphonate is produced: 2N2H4 + SO3 = H2N-NH-SO3H.N2H4. Among the carboxyl and carbonyl substitution . products are hydrazine-carboxylic acid, NH2-NH-COOH, the dicarboxylic acid, HOOC-NH-NH-COOH, carbonic-acid dihydrazide, CO(NH.NH2), and the amide hydrazide or semi-carbazide, NH2-CO-NH-NH2. Detection and Estimation
The reactions which are used in the analysis of hydrazine and its salts usually depend upon its oxidation. Thus it is determined by titration with potassium permanganate in acid solution, or with vanadic acid. Nitrogen is quantitatively evolved:
N2H4 + 2O = N2 + 2H2O. Hydrazine is also a useful reagent in general analysis. A solution made by dissolving the hydrochloride in an excess of alkali will quantitatively precipitate copper as metal. The copper solution is added drop by drop. Copper can be estimated in this way in the presence of tin zinc. Hydrazine alone does not reduce chlorates, bromates, or iodates, but in the presence of cupric oxide the reduction is quantitative: 2KClO3 + 3N2H4.HNO3 = 6H2O+3N2 + 3HNO3 + 2KCl. The chloride, etc., may then be determined in the usual manner after decomposition of the excess of hydrazine with permanganate and nitric acid. The Sulphonic and Sulphinic Substitution Products of Ammonia, Hydroxylamine, and Hydrazine. Sulphinic Derivatives
The action of dry SO2 on dry NH3 produces a variety of coloured compounds having the empirical formulae (NH3)x,(SO2)y. It appears, however, that a little water is required in order that combination may occur freely. In ethereal dry solution a compound, (NH3)2SO2, has been isolated as a white solid, which may also be the ammonium salt of amido-sulphinic acid.
Organic substitution products of amino-sulphinic acid, R-NH-SO2H, and of thionyl imide, R-N=SO, are known. The addition of thionyl chloride drop by drop to liquid ammonia gives a red solution, from which triammonium imido-disulphinate can be isolated. This may also be formed by the hydrolysis of imido-sulphonamide. Oxygen and Hydroxyl Substitution Products of Hydrazine
These compounds are chiefly represented by organic derivatives, namely, (azoxy-compounds), R-N=NOH (free diazocompounds), R-NH-NO (their tautomeric forms, nitrosamines), RH=N-NO2 and R2=N-NO2 (nitramines).
Although dinitrous acid, or rather dinitronic acid, (HO-NO)2, does not exist, the intermediate oxidation products of hydrazine, namely, H2N-NO2, nitramide, HO-N-NOH, hyponitrous acid and nitrohydroxylamine, HO-NH-NO2, have been prepared. |
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |